Размер шрифта: A AA Изображения Выключить Включить Цвет сайта Ц Ц Ц Х
МБОУ "Школа № 109 имени М.И.Абдуллина"
Дата создания: 1 сентября 1962 года
Меню сайта
Разделы
Сведения об образовательном учреждении [1]
Коллектив школы [37]
История школы [59]
Выпускники школы [33]
Деятельность школы [42]
Школьная газета [14]
Документы [21]
Наша гордость [4]
Экспериментальная деятельность [3]
Приём в первый класс [13]
Дополнительные услуги [10]
Локальные акты [55]
Школьное питание [27]
Финансовая деятельность [17]
ГИА [20]
Стипендиаты [1]
Самообследование [9]
Режим работы [9]
Библиотека [16]
Национальное образование [3]
Материально-техническое обеспечение [8]
ЭОР [4]
Образовательные программы [41]
Трудоустройство выпускников [0]
Мини-чат
Наш опрос
В каком классе вы учитесь?
Всего ответов: 1262
Главная » Образовательные программы [ Добавить статью ]

«МАТЕМАТИКА»
«МАТЕМАТИКА»
Пояснительная записка
Рабочая программа по математике составлена в соответствии со следующими документами:
1. Фундаментальное ядро содержания общего образования
2. Федеральный государственный образовательный стандарт основного общего образования, утверждённый приказом Министерства образования и науки Российской Федерации от 17 декабря 2010г.№1897
3. Федеральный перечень учебников, рекомендованных Министерством образования и науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях, на 2015-2016 учебный год
4. Примерная про¬грамма по математике 5-9 классы, А.А.Кузнецов, М.В. Рыжаков, А.М.Кондаков.
Математика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предметов обусловливает и её особую роль с точки зрения всестороннего развития личности учащихся. При этом когнитивная составляющая данного курса позволяет обеспечить как требуемый государственным стандартом необходимый уровень математической подготовки, так и повышенный уровень, являющийся достаточным для углубленного изучения предмета.
Вместе с тем очевидно, что положение с обучением предмету «Математика» в основной школе требует к себе самого серьёзного внимания. Анализ состояния преподавания свидетельствует, что школа не полностью обеспечивает функциональную грамотность учащихся.
В основу настоящей программы положены педагогические и дидактические принципы вариативного развивающего образования, изложенные в концепции образовательной программы «Перспективная школа», и современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС.
А. Личностно ориентированные принципы: принцип адаптивности; принцип развития; принцип комфортности процесса обучения.
Б. Культурно ориентированные принципы: принцип целостной картины мира; принцип целостности содержания образования; принцип систематичности; принцип смыслового отношения к миру; принцип ориентировочной функции знаний; принцип опоры на культуру как мировоззрение и как культурный стереотип.
В. Деятельностно ориентированные принципы: принцип обучения деятельности; принцип управляемого перехода от деятельности в учебной ситуации к деятельности в жизненной ситуации; принцип перехода от совместной учебно-познавательной деятельности к самостоятельной деятельности учащегося (зона ближайшего развития); принцип опоры на процессы спонтанного развития; принцип формирования потребности в творчестве и умений творчества.

Математическое образование является обязательной и не¬отъемлемой частью общего образования на всех уровнях. Обучение математике в основной школе направлено на достижение следующих целей:
1) в направлении личностного развития:
• Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
• Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
• Формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
• Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
• Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
• Развитие интереса к математическому творчеству и математических способностей;
2) в метапредметном направлении:
• Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
• Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
3) в предметном направлении:
• Овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
• Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
В организации учебно – воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения. Важным условием правильной организации этого процесса является выбор рациональной системы методов и приемов обучения, специфики решаемых образовательных и воспитательных задач.
Целью изучения курса математике в 5-6 классах является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают представление об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур.
Целью изучения курса математике в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.
Целью изучения курса геометрии в 7-9 классах является систематическое изучение свойств геометрических фигур на плоскости, формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин и курса стереометрии в старших классах.
В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.
Предлагаемый курс позволяет обеспечить формирование как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.
Общая характеристика учебного предмета «Математика»
В основе содержания обучения математике лежит овладение учащимися следующими видами компетенций: предметной, коммуникативной, организационной и общекультурной. В соответствии с этими видами компетенций выделены главные содержательно-целевые направления развития учащихся средствами предмета «Математика».
Предметная компетенция. Под предметной компетенцией понимается осведомлённость школьников о системе основных математических представлений и овладение ими необходимыми предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т.д.; о математическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели, работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения математических задач, а также применять эти знания и умения для решения многих жизненных задач.
Коммуникативная компетенция. Под коммуникативной компетенцией понимается сформированность умения ясно и чётко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая её критическому анализу, отстаивать (при необходимости) свою точку зрения, выстраивая систему аргументации. Формируются образующие эту компетенцию умения, а также умения извлекать информацию из разного рода источников, преобразовывая её при необходимости в другие формы (тексты, таблицы, схемы и т.д.).
Организационная компетенция. Под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые учащимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать её на составные части, на которых будет основываться процесс её решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.
Общекультурная компетенция. Под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, её месте в системе других наук, а также её роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития математики на разных исторических этапах; о высокой практической значимости математики с точки зрения создания и развития материальной культуры человечества, а также о важной роли математики с точки зрения формировании таких важнейших черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.
Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. В программе оно пред-ставлено в виде совокупности содержательных разделов, кон¬кретизирующих соответствующие блоки фундаментального ядра применительно к основной школе. Программа регламентирует объем материала, обязательного для изучения в основ¬ной школе, а также дает его распределение между 5—6 и 7—9 классами.
Содержание математического образования в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и обще-культурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую ли¬нию, пронизывающую все основные разделы содержания ма¬тематического образования на данной ступени обучения.
Содержание раздела «Арифметика» служит базой для даль¬нейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.
Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразова¬ние символьных форм вносит специфический вклад в разви¬тие воображения учащихся, их способностей к математическо¬му творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с ир¬рациональными выражениями, с тригонометрическими функ¬циями и преобразованиями, входят в содержание курса мате¬матики на старшей ступени обучения в школе.
Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разно¬образных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вно¬сит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.
Раздел «Вероятность и статистика» — обязательный ком¬понент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамот¬ности — умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, про-водить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том чис¬ле в простейших прикладных задачах.
При изучении статистики и вероятности расширяются представления о современной картине мира и методах его ис¬следования, формируется понимание роли статистики как ис-точника социально значимой информации и закладываются основы вероятностного мышления.
Цель содержания раздела «Геометрия» — развить у учащих¬ся пространственное воображение и логическое мышление пу¬тем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометри¬ческой интуиции. Сочетание наглядности со строгостью явля-ется неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значи¬тельной степени несет в себе межпредметные знания, кото¬рые находят применение как в различных математических дисциплинах, так и в смежных предметах.
Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изуча¬ется и используется распределенно — в ходе рассмотрения различных вопросов курса. Соответствующий материал наце¬лен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.
Раздел «Математика в историческом развитии» предназна¬чен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролиру¬ется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рас-смотрении проблематики основного содержания математичес¬кого образования.
Ценностные ориентиры содержания учебного предмета
Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формировани¬ем способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей куль¬туры.
Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реально¬го мира: пространственные формы и количественные отноше¬ния — от простейших, усваиваемых в непосредственном опы¬те, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математиче¬ских знаний затруднено понимание принципов устройства и ис¬пользования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится вы¬полнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими прие¬мами геометрических измерений и построений, читать инфор¬мацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, со¬ставлять несложные алгоритмы и др.
Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисцип¬лин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специально¬стей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, био¬логия, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.
Для жизни в современном обществе важным является формирование математического стиля мышления, проявляю¬щегося в определенных умственных навыках. В процессе ма-тематической деятельности в арсенал приемов и методов че¬ловеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построе¬ний, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мыш¬ление. Ведущая роль принадлежит математике в формирова¬нии алгоритмического мышления и воспитании умений дей-ствовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.
Обучение математике дает возможность развивать у уча¬щихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, сим-волические, графические) средства.
Математическое образование вносит свой вклад в форми¬рование общей культуры человека. Необходимым компонен¬том общей культуры в современном толковании является об¬щее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенно¬стях применения математики для решения научных и при¬кладных задач.
Изучение математики способствует эстетическому воспита¬нию человека, пониманию красоты и изящества математиче¬ских рассуждений, восприятию геометрических форм, усвое¬нию идеи симметрии.
История развития математического знания дает возмож¬ность пополнить запас историко-научных знаний школьни¬ков, сформировать у них представления о математике как ча¬сти общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математи¬ческой науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.
Место учебного предмета «Математика» в учебном плане
На изучение математики в основной школе отводит 5 учебных часов в не¬делю течение каждого года обучения, всего 850 уроков.
В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Математика» изучается с 5-го по 9-й класс в виде следующих учебных курсов: 5–6 класс – «Математика» (интегрированный предмет), 7–9 классах предмет «Математика» (Алгебра и Геометрия).
Распределение учебного времени между этими предметами представлено в таблице.
Классы Предметы математического цикла Количество часов
5-6 Математика 340

7-9 Математика (Алгебра) 306

Математика(Геометрия) 204

Всего 850
Предмет «Математика» в 5—6 классах включает арифмети¬ческий материал, элементы алгебры и геометрии, а также эле¬менты вероятностно-статистической линии.
Предмет «Алгебра» включает некоторые вопросы арифме¬тики, развивающие числовую линию 5—6 классов, собственно алгебраический материал, элементарные функции, а также элементы вероятностно-статистической линии.
В рамках учебного предмета «Геометрия» традиционно изучаются евклидова геометрия, элементы векторной алгебры, геометрические преобразования.
Изучение вероятностно-статистического материала отнесено к 5—6, к 7—9 классам
Личностные, метапредметные и предметные результаты освоения учебного предмета «Математика»
5–9 классы
Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 5–6 класс – «Математика», 7–9 класс – «Математика» («Алгебра» и «Геометрия») являются следующие качества:
– независимость и критичность мышления;
– воля и настойчивость в достижении цели.
Средством достижения этих результатов является:
– система заданий учебников;
– представленная в учебниках в явном виде организация материала по принципу минимакса;
– использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно- деятельностного подхода в обучении, технология оценивания.
Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
5–6-й классы
– самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
– выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

7–9-й классы
– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;
– выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;
– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
– подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;
– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);
– планировать свою индивидуальную образовательную траекторию;
– работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);
– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
– в ходе представления проекта давать оценку его результатам;
– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
– уметь оценить степень успешности своей индивидуальной образовательной деятельности;
– давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

Средством формирования регулятивных УУД служат технология системно- деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).
Познавательные УУД:
5–9-й классы
– анализировать, сравнивать, классифицировать и обобщать факты и явления;
– осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);
– строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;
– создавать математические модели;
– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
– вычитывать все уровни текстовой информации.
– уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.
– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.
– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;
– уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.
Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.
– Использование математических знаний для решения различных математических задач и оценки полученных результатов.
– Совокупность умений по использованию доказательной математической речи.
– Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.
– Умения использовать математические средства для изучения и описания реальных процессов и явлений.
– Независимость и критичность мышления.
– Воля и настойчивость в достижении цели.
Коммуникативные УУД:
5–9-й классы
– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
– в дискуссии уметь выдвинуть контраргументы;
– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
– уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.
Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и системно- деятельностного обучения.
Предметными результатами изучения предмета «Математика» являются следующие умения:
Натуральные числа. Дроби. Рациональные числа
Выпускник научится:
• понимать особенности десятичной системы счисления;
• оперировать понятиями, связанными с делимостью натуральных чисел;
• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
• сравнивать и упорядочивать рациональные числа;
• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
• использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.
Выпускник получит возможность:
• познакомиться с позиционными системами счисления с основаниями, отличными от 10;
• углубить и развить представления о натуральных числах и свойствах делимости;
• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
Действительные числа
Выпускник научится:
• использовать начальные представления о множестве действительных чисел;
• оперировать понятием квадратного корня, применять его в вычислениях.
Выпускник получит возможность:
• развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;
• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
Измерения, приближения, оценки
Выпускник научится:
• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
Выпускник получит возможность:
• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
Алгебраические выражения
Выпускник научится:
• оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
• выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
• выполнять разложение многочленов на множители.
Выпускник получит возможность научиться:
• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
• применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наимень¬шего значения выражения).
Уравнения
Выпускник научится:
• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
• применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.
Выпускник получит возможность:
• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
Неравенства
Выпускник научится:
• понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
• решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;
• применять аппарат неравенств для решения задач из различных разделов курса.
Выпускник получит возможность научиться:
• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.
Основные понятия. Числовые функции
Выпускник научится:
• понимать и использовать функциональные понятия и язык (термины, символические обозначения);
• строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
• понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.
Выпускник получит возможность научиться:
• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.
Числовые последовательности
Выпускник научится:
• понимать и использовать язык последовательностей (термины, символические обозначения);
• применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.
Выпускник получит возможность научиться:
• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;
• понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.
Описательная статистика
Выпускник научится использовать простейшие способы представления и анализа статистических данных.
Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.
Случайные события и вероятность
Выпускник научится находить относительную частоту и вероятность случайного события.
Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.
Комбинаторика
Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.
Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.
Наглядная геометрия
Выпускник научится:
• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
• строить развёртки куба и прямоугольного параллелепипеда;
• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
• вычислять объём прямоугольного параллелепипеда.
Выпускник получит возможность:
• научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
• углубить и развить представления о пространственных геометрических фигурах;
• научиться применять понятие развёртки для выполнения практических расчётов.
Геометрические фигуры
Выпускник научится:
• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
• решать простейшие планиметрические задачи в пространстве.
Выпускник получит возможность:
• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
• научиться решать задачи на построение методом геометрического места точек и методом подобия;
• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
• приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».
Измерение геометрических величин
Выпускник научится:
• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
• вычислять площади треугольников, прямоугольников, параллелограмм- мов, трапеций, кругов и секторов;
• вычислять длину окружности, длину дуги окружности;
• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Выпускник получит возможность научиться:
• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.

Координаты
Выпускник научится:
• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
• использовать координатный метод для изучения свойств прямых и окружностей.
Выпускник получит возможность:
• овладеть координатным методом решения задач на вычисления и доказательства;
• приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
• приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».
Векторы
Выпускник научится:
• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.
Выпускник получит возможность:
• овладеть векторным методом для решения задач на вычисления и доказательства;
• приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».
Содержание учебного предмета «Математика»
АРИФМЕТИКА 240ч.
Натуральные числа. Натуральный ряд. Десятичная сис¬тема счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.
Степень с натуральным показателем.
Числовые выражения, значение числового выражения. По¬рядок действий в числовых выражениях, использование ско¬бок. Решение текстовых задач арифметическими способами.
Делители и кратные. Свойства и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.
Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.
Десятичные дроби. Сравнение десятичных дробей. Ариф¬метические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновен¬ной в виде десятичной.
Проценты; нахождение процентов от величины и величи¬ны по ее процентам. Отношение; выражение отношения в процентах. Пропорция; основное свойство пропорции.
Решение текстовых задач арифметическими способами.
Рациональные числа. Положительные и отрицательные числа, модуль числа. Множество целых чисел.
Множество рациональных чисел; рациональное число как отношение , где
m — целое число, n — натуральное число. Сравнение рацио¬нальных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с це¬лым показателем.
Действительные числа. Квадратный корень из числа. Ко¬рень третьей степени.
Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.
Множество действительных чисел; представление действи¬тельных чисел в виде бесконечных десятичных дробей. Срав¬нение действительных чисел.
Координатная прямая. Изображение чисел точками коор¬динатной прямой. Числовые промежутки.
Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение мно¬жителя — степени 10 — в записи числа.
Приближенное значение величины, точность приближе¬ния. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.
АЛГЕБРА 200ч.
Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.
Степень с натуральным показателем и ее свойства. Одно¬члены и многочлены. Степень многочлена. Сложение, вычи¬тание, умножение многочленов. Формулы сокращенного умно-жения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен; разло¬жение квадратного трехчлена на множители.
Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраи¬ческих дробей. Степень с целым показателем и ее свойства.
Рациональные выражения и их преобразования. Доказа¬тельство тождеств.
Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выра¬жений и вычислениям.
Уравнения. Уравнение с одной переменной. Корень урав¬нения. Свойства числовых равенств. Равносильность уравнений.
Линейное уравнение. Квадратное уравнение: формула кор¬ней квадратного уравнения. Теорема Виета. Решение урав¬нений, сводящихся к линейным и квадратным. Примеры ре-шения уравнений третьей и четвертой степени. Решение дробно-рациональных уравнений.
Уравнение с двумя переменными. Линейное уравнение с дву¬мя переменными, примеры решения уравнений в целых числах.
Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя перемен¬ными; решение подстановкой и сложением. Примеры реше¬ния систем нелинейных уравнений с двумя переменными.
Решение текстовых задач алгебраическим способом.
Декартовы координаты на плоскости. Графическая интер¬претация уравнения с двумя переменными. График линейно¬го уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простей¬ших нелинейных уравнений: парабола, гипербола, окруж¬ность. Графическая интерпретация систем уравнений с двумя переменными.
Неравенства. Числовые неравенства и их свойства.
Неравенство с одной переменной. Равносильность нера¬венств. Линейные неравенства с одной переменной. Квадрат¬ные неравенства. Системы неравенств с одной переменной.
Категория: Образовательные программы | Добавил: Алина_Пермякова (13.02.2016)
Просмотров: 194
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Включить версию для слабовидящих
Форма входа
Поиск